Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse

نویسندگان

  • Quentin Perrenoud
  • Hélène Geoffroy
  • Benjamin Gauthier
  • Armelle Rancillac
  • Fabienne Alfonsi
  • Nicoletta Kessaris
  • Jean Rossier
  • Tania Vitalis
  • Thierry Gallopin
چکیده

IN THE NEOCORTEX, NEURONAL NITRIC OXIDE (NO) SYNTHASE (NNOS) IS ESSENTIALLY EXPRESSED IN TWO CLASSES OF GABAERGIC NEURONS: type I neurons displaying high levels of expression and type II neurons displaying weaker expression. Using immunocytochemistry in mice expressing GFP under the control of the glutamic acid decarboxylase 67k (GAD67) promoter, we studied the distribution of type I and type II neurons in the barrel cortex and their expression of parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP). We found that type I neurons were predominantly located in deeper layers and expressed SOM (91.5%) while type II neurons were concentrated in layer II/III and VI and expressed PV (17.7%), SOM (18.7%), and VIP (10.2%). We then characterized neurons expressing nNOS mRNA (n = 42 cells) ex vivo, using whole-cell recordings coupled to single-cell reverse transcription-PCR and biocytin labeling. Unsupervised cluster analysis of this sample disclosed four classes. One cluster (n = 7) corresponded to large, deep layer neurons, displaying a high expression of SOM (85.7%) and was thus very likely to correspond to type I neurons. The three other clusters were identified as putative type II cells and corresponded to neurogliaform-like interneurons (n = 19), deep layer neurons expressing PV or SOM (n = 9), and neurons expressing VIP (n = 7). Finally, we performed nNOS immunohistochemistry on mouse lines in which GFP labeling revealed the expression of two specific developmental genes (Lhx6 and 5-HT(3A)). We found that type I neurons expressed Lhx6 but never 5-HT(3A), indicating that they originate in the medial ganglionic eminence (MGE). Type II neurons expressed Lhx6 (63%) and 5-HT(3A) (34.4%) supporting their derivation either from the MGE or from the caudal ganglionic eminence (CGE) and the entopeduncular and dorsal preoptic areas. Together, our results in the barrel cortex of mouse support the view that type I neurons form a specific class of SOM-expressing neurons while type II neurons comprise at least three classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex

CORTICAL GABAERGIC INTERNEURONS IN RODENTS ORIGINATE IN THREE SUBCORTICAL REGIONS: the medial ganglionic eminence (MGE), the lateral/caudal ganglionic eminence (LGE/CGE), and the preoptic area (POA). Each of these neuroepithelial precursor domains contributes different interneuron subtypes to the cortex. Neuronal NOS (nNOS)-expressing neurons represent a heterogenous population of cortical inte...

متن کامل

Cortical NO interneurons: from embryogenesis to functions

Neuronal processing and physiology of cortical circuits rely on a delicate interplay between glutamatergic excitatory neurons and GABAergic inhibitory interneurons in a spatially, temporally, and cell-type specific manner. Understanding these processes is further complicated by the large diversity characterizing the cerebral cortex (Ascoli et al., 2008; DeFelipe et al., 2013). Although recent a...

متن کامل

A quantitative study of neuronal nitric oxide synthase expression in laminae I–III of the rat spinal dorsal horn

Nitric oxide produced by neuronal nitric oxide synthase (nNOS) in the spinal cord is required for development of hyperalgesia in inflammatory and neuropathic pain states. nNOS is expressed by some dorsal horn neurons, and an early study that used a histochemical method to identify these cells suggested that they were mainly inhibitory interneurons. We have carried out a quantitative analysis of...

متن کامل

Postnatal Changes of Conduction Velocity of the Fibers in and out of the Mouse Barrel Cortex

There are some conflicts about constancy of conduction velocity (CV) in a given tract of nervous system. By recording excitatory postsynaptic currents (EPSC) in layer IV of the somatosensory cortex we tried to clear changes in CV of thalamocortical tract of mice aged 3 to 50 days old. Field potentials and EPSC were recorded in the layer IV by stimulation of ventrobasal nucleus of thalamus (VB) ...

متن کامل

Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex

Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012